

Grade 7/8 Math Circles February 20, 21, 22, 23, 2023 Math in Musical Scales - Solutions

Exercise Solutions

Exercise 1

Determine whether or not the following fractions are in simplest form. If they aren't, write them in simplest form.

- a) $\frac{2}{3}$
- b) $\frac{3}{9}$
- c) $\frac{64}{68}$ d) $\frac{5}{10}$ e) $\frac{36}{63}$ f) $\frac{7}{8}$ g) $\frac{12}{36}$

- h) $\frac{57}{91}$

Exercise 1 Solution

a) Simplest form

b)
$$\frac{3}{9} = \frac{3 \times 1}{3 \times 3} = \frac{1}{3}$$

c)
$$\frac{64}{68} = \frac{4 \times 16}{4 \times 17} = \frac{16}{17}$$

d)
$$\frac{5}{10} = \frac{5 \times 1}{5 \times 2} = \frac{1}{2}$$

e)
$$\frac{36}{63} = \frac{9 \times 4}{9 \times 7} = \frac{4}{7}$$

f) Simplest form

g)
$$\frac{12}{36} = \frac{12 \times 1}{12 \times 3} = \frac{1}{3}$$

h) Simplest form

Exercise 2

Given that the frequency of the tonic is 300 Hz, find the rest of the notes in the Pythagorean scale.

Exercise 2 Solution

• do: 300 Hz

- re: 300 Hz $\times \frac{9}{8} = \frac{300 \times 9}{8} = \frac{2700}{8} = 337.5$ Hz
- mi: 300 Hz $\times \frac{81}{64} = \frac{300 \times 81}{64} = \frac{24300}{64} \approx 379.69$ Hz
- fa: 300 Hz $\times \frac{4}{3} = \frac{300 \times 4}{3} = \frac{1200}{3} = 400$ Hz
- so: 300 Hz $\times \frac{3}{2} = \frac{300 \times 3}{2} = \frac{900}{2} = 450$ Hz
- la: 300 Hz $\times \frac{27}{16} = \frac{300 \times 27}{16} = \frac{8100}{16} = 506.25$ Hz
- ti: 300 Hz $\times \frac{243}{128} = \frac{300 \times 243}{128} = \frac{72900}{128} \approx 569.53$ Hz
- do: $300 \text{ Hz} \times 2 = 600 \text{ Hz}$

Exercise 3

Given that the frequency of the tonic is 280 Hz, find the rest of the notes in the just intonation scale.

Exercise 3 Solution

- do: 280 Hz
- re: 280 Hz $\times \frac{9}{8} = \frac{280 \times 9}{8} = \frac{2520}{8} = 315$ Hz
- mi: 280 Hz $\times \frac{5}{4} = \frac{280 \times 5}{4} = \frac{1400}{4} = 350$ Hz
- fa: 280 Hz $\times \frac{4}{3} = \frac{280 \times 4}{3} = \frac{1120}{3} \approx 373.33$ Hz
- so: 280 Hz $\times \frac{3}{2} = \frac{280 \times 3}{2} = \frac{840}{2} = 420$ Hz
- la: 280 Hz $\times \frac{5}{3} = \frac{280 \times 5}{3} = \frac{1400}{3} \approx 466.67$ Hz
- ti: 280 Hz $\times \frac{15}{8} = \frac{280 \times 15}{8} = \frac{4200}{8} = 525$ Hz
- do: 280 Hz $\times 2 = 560$ Hz

Exercise 4

Find the missing notes in the E scale from Example F.

Exercise 4 Solution

- 372.5 Hz is greater than 348.8 Hz (F) so the second note is F#
- 419.1 Hz is greater than 392.4 Hz (G) so the third note is G#
- 558.7 Hz is greater than 523.2 Hz (C_2) so the sixth note is $C\sharp$
- 628.6 Hz is greater than $294.3 \times 2 = 588.6$ Hz (D₂) so the seventh note is D#

The completed scale is E, F#, G#, A, B, C#, D#, E.

Exercise 5

Find the intervals of the just intonation system.

Exercise 5 Solution

As a reminder, just intonation is as follows:

do	re	mi	fa	so	la	ti	do
1	$\frac{9}{8}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{15}{8}$	2

- second: $\frac{9}{8} \div 1 = \frac{9}{8}$
- third: $\frac{5}{4} \div \frac{9}{8} = \frac{5}{4} \times \frac{8}{9} = \frac{5 \times 8}{4 \times 9} = \frac{40}{36} = \frac{10}{9}$
- fourth: $\frac{4}{3} \div \frac{5}{4} = \frac{4}{3} \times \frac{4}{5} = \frac{4 \times 4}{3 \times 5} = \frac{16}{15}$
- fifth: $\frac{3}{2} \div \frac{4}{3} = \frac{3}{2} \times \frac{3}{4} = \frac{3 \times 3}{2 \times 4} = \frac{9}{8}$
- sixth: $\frac{5}{3} \div \frac{3}{2} = \frac{5}{3} \times \frac{2}{3} = \frac{5 \times 2}{3 \times 3} = \frac{10}{9}$
- seventh: $\frac{15}{8} \div \frac{5}{3} = \frac{15}{8} \times \frac{3}{5} = \frac{15 \times 3}{8 \times 5} = \frac{45}{40} = \frac{9}{8}$
- eighth: $2 \div \frac{15}{8} = \frac{2}{1} \times \frac{8}{15} = \frac{2 \times 8}{1 \times 15} = \frac{16}{15}$

Thus, the intervals of the just intonation system are:

$$\mid \frac{9}{8} \mid \frac{10}{9} \mid \frac{16}{15} \mid \frac{9}{8} \mid \frac{10}{9} \mid \frac{9}{8} \mid \frac{16}{15} \mid$$

Problem Set Solutions

- 1. Complete the following operations. Reduce all fractions to simplest form. (As a challenge, solve without a calculator).
 - a) $\frac{24}{25} \div \frac{1}{2}$
 - b) $\frac{7}{10} \times \frac{3}{16}$
 - c) $\frac{5}{9} \div \frac{37}{40}$
 - d) $\frac{1}{3} \times \frac{9}{7}$
 - e) $\frac{6}{13} \div 2$
 - f) $\frac{25}{17} \times \frac{12}{5}$

Solution:

- a) $\frac{24}{25} \div \frac{1}{2} = \frac{24}{25} \times \frac{2}{1} = \frac{24 \times 2}{25} = \frac{48}{25}$
- b) $\frac{7}{10} \times \frac{3}{16} = \frac{7 \times 3}{10 \times 16} = \frac{21}{160}$
- c) $\frac{5}{9} \div \frac{37}{40} = \frac{5}{9} \times \frac{40}{37} = \frac{5 \times 40}{9 \times 37} = \frac{200}{333}$
- d) $\frac{1}{3} \times \frac{9}{7} = \frac{9}{3 \times 7} = \frac{9}{21} = \frac{3}{7}$
- e) $\frac{6}{13} \div 2 = \frac{6}{13} \times \frac{1}{2} = \frac{6}{13 \times 2} = \frac{6}{26} = \frac{3}{13}$
- f) $\frac{25}{17} \times \frac{12}{5} = \frac{25 \times 12}{17 \times 5} = \frac{300}{85} = \frac{60}{17}$
- 2. Determine whether the following notes are a tone or a semitone apart. Looking at the keys on a piano may help for this question.
 - a) C and D
 - b) B and C
 - c) C# and Eb
 - d) $E\sharp$ and G
 - e) $G\sharp$ and $A\sharp$
 - f) B and A#

Solution:

a) Tone

- b) Semitone
- c) Tone
- d) Tone
- e) Tone
- f) Semitone
- 3. Find the missing values of the just scale in the table below.

do	re	mi	fa	so	la	ti	do
1	$\frac{9}{8}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{15}{8}$	2
150 Hz							300 Hz

Solution:

• re: 150 Hz
$$\times \frac{9}{8} = \frac{150 \times 9}{8} = \frac{1350}{8} = 168.75$$
 Hz

• mi: 150 Hz
$$\times \frac{5}{4} = \frac{150 \times 5}{4} = \frac{750}{4} = 187.5$$
 Hz

• fa: 150 Hz
$$\times \frac{4}{3} = \frac{150 \times 4}{3} = \frac{600}{3} = 200$$
 Hz

• so: 150 Hz
$$\times \frac{3}{2} = \frac{150 \times 3}{2} = \frac{450}{2} = 225$$
 Hz

• la: 150 Hz
$$\times \frac{5}{3} = \frac{150 \times 5}{3} = \frac{750}{3} = 250$$
 Hz

• ti: 150 Hz
$$\times \frac{15}{8} = \frac{150 \times 15}{8} = \frac{2250}{8} = 281.25$$
 Hz

So the completed table should look like this:

do	re	mi	fa	so	la	ti	do
1	$\frac{9}{8}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{5}{3}$	15 8	2
150 Hz	168.75 Hz	187.5 Hz	200 Hz	225 Hz	$250~\mathrm{Hz}$	281.25 Hz	300 Hz

4. Find the missing values of the Pythagorean scale in the table below.

do	re	mi	fa	so	la	ti	do
1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2
200 Hz							400 Hz

Solution:

• re: 200 Hz $\times \frac{9}{8} = \frac{200 \times 9}{8} = \frac{1800}{8} = 225$ Hz

• mi: 200 Hz $\times \frac{81}{64} = \frac{200 \times 81}{64} = \frac{16200}{64} \approx 253.13$ Hz

• fa: 200 Hz $\times \frac{4}{3} = \frac{200 \times 4}{3} = \frac{800}{3} \approx 266.67$ Hz

• so: 200 Hz $\times \frac{3}{2} = \frac{200 \times 3}{2} = \frac{600}{2} = 300$ Hz

• la: 200 Hz $\times \frac{27}{16} = \frac{200 \times 27}{16} = \frac{5400}{16} = 337.5$ Hz

• ti: 200 Hz $\times \frac{243}{128} = \frac{200 \times 243}{128} = \frac{48600}{128} \approx 379.69$ Hz

So the completed table should look like this:

do	re	mi	fa	so	la	ti	do
1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2
200 Hz	225 Hz	253.13 Hz	266.67 Hz	300 Hz	337.5 Hz	$379.69~\mathrm{Hz}$	400 Hz

5. Transpose the following Pythagorean scale with a tonic of Bb to have a tonic of F. Find all of the notes for the new scale.

$\mathbf{B}\flat$	\mathbf{C}	D	$\mathbf{E}\flat$	\mathbf{F}	\mathbf{G}	A	$\mathbf{B}\flat$
1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2
58 Hz							116 Hz

Solution: First, find frequencies for Bb scale:

• C: 58 Hz $\times \frac{9}{8} = \frac{58 \times 9}{8} = \frac{522}{8} = 65.25 \text{ Hz}$

• D: 58 Hz $\times \frac{81}{64} = \frac{58 \times 81}{64} = \frac{4698}{64} \approx 73.41$ Hz

• Eb: 58 Hz $\times \frac{4}{3} = \frac{58 \times 4}{3} = \frac{232}{3} \approx 77.33 \text{ Hz}$

• F: 58 Hz $\times \frac{3}{2} = \frac{58 \times 3}{2} = \frac{174}{2} = 87$ Hz

• G: 58 Hz $\times \frac{27}{16} = \frac{58 \times 27}{16} = \frac{1566}{16} \approx 97.88$ Hz

• A: 58 Hz $\times \frac{243}{128} = \frac{58 \times 243}{128} = \frac{14094}{128} \approx 110.11 \text{ Hz}$

The completed Bb table looks like this:

$\mathbf{B}\flat$	\mathbf{C}	D	$\mathbf{E} \flat$	F	G	A	$\mathbf{B}\flat$
1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2
58 Hz	$65.25~\mathrm{Hz}$	73.41 Hz	$77.33~\mathrm{Hz}$	87 Hz	97.88 Hz	110.11 Hz	116 Hz

Calculate new notes with tonic of F (87 Hz):

- re: 87 Hz $\times \frac{9}{8} = \frac{87 \times 9}{8} = \frac{783}{8} \approx 97.88$ Hz
- mi: 87 Hz $\times \frac{81}{64} = \frac{87 \times 81}{64} = \frac{7047}{64} \approx 110.11$ Hz
- fa: 87 Hz $\times \frac{4}{3} = \frac{87 \times 4}{3} = \frac{348}{3} = 116$ Hz
- so: 87 Hz $\times \frac{3}{2} = \frac{87 \times 3}{2} = \frac{261}{2} = 130.5$ Hz
- la: 87 Hz $\times \frac{27}{16} = \frac{87 \times 27}{16} = \frac{2349}{16} \approx 146.81$ Hz
- ti: 87 Hz $\times \frac{243}{128} = \frac{87 \times 243}{128} = \frac{21141}{128} \approx 165.16$ Hz

We notice that 97.88 Hz is G, 110.11 Hz is A, 116 Hz is Bb, 130.5 Hz = 2×65.25 Hz so 130.5 Hz is C and 146.81 Hz $\approx 2 \times 73.41$ Hz so 146.81 Hz is D. The only note we are missing is the second last one. From the Pythagorean tuning interval pattern, we know the missing note is a tone above D and a semitone below F. Looking at a piano, we realize that this missing note is E. So the completed F scale looks like this:

\mathbf{F}	G	A	$\mathbf{B}\flat$	\mathbf{C}	D	${f E}$	F
1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2
87 Hz	97.88 Hz	110.11 Hz	116 Hz	130.5 Hz	146.81 Hz	165.16 Hz	116 Hz

6. Determine whether the following scale is in the Pythagorean tuning system or the just intonation system. (Hint: look at the intervals).

do	re	mi	fa	so	la	ti	do
$50~\mathrm{Hz}$	56.25 Hz	$62.5~\mathrm{Hz}$	$66\frac{2}{3} \text{ Hz}$	75 Hz	$83\frac{1}{3} \text{ Hz}$	93.75 Hz	100 Hz

Solution: The just intonation intervals are as follows:

The Pythagorean tuning intervals are as follows:

Since the seventh is different between the two tuning systems, let's calculate it from the given scale.

$$\frac{100}{93.75} = \frac{10000}{9375} = \frac{625 \times 16}{625 \times 15} = \frac{16}{15}$$

So the given scale is in the just intonation system.

7. Describe the benefits and drawbacks of Pythagorean tuning and just intonation.

Solution: Benefits of Pythagorean tuning:

- Playable in any key
- Each key has a unique sound
- Has a semitone-tone pattern

Drawbacks of Pythagorea tuning:

- Large numerators and denominators
- Produces wolf intervals in certain keys
- Cannot be repetedly transposed

Benefits of just intonation:

- Has a pure and pleasant sound in some keys
- Each key has a unique sound
- Small numerators and denominators for calculations

Drawbacks of just intonation:

- $\bullet\,$ Sounds "wrong" in some keys
- Does not have a semitone-tone pattern
- $\bullet\,$ Certain keys are unplayable on common instruments
- 8. If you wanted to transpose a song over and over again, which tuning system would you choose? Why?

Solution: I would choose equal temperament. Pythagorean tuning creates wolf intervals in some keys and just intonation doesn't work for certain keys. I know that equal temperament can be played in all keys so we are able to transpose to any key.